Atenção

Blog em construção... Se tiver sugestões, serão bem vindas !!!

domingo, 27 de março de 2011

Cabos de rede








Os cabos de par trançado são classificados em categorias, que indicam a qualidade do cabo e a freqüência máxima suportada por ele. Cabos cat 5e, por exemplo, são adequados a redes de 10, 100 e 1000 megabits, enquanto os cabos cat 6 e cat 6a podem também ser usados nas redes 10G. Temos também cabos e conectores blindados, cabos stranded e outras variações. Se você acha que todos os cabos de rede são iguais, precisa definitivamente ler este tutorial.
Existem basicamente 3 tipos diferentes de cabos de rede: os cabos de par trançado (que são, de longe, os mais comuns), os cabos de fibra óptica (usados principalmente em links de longa distância) e os cabos coaxiais, que são usados em cabos de antenas para redes wireless e em algumas redes antigas.
Existem vários motivos para os cabos coaxiais não serem mais usados hoje em dia: eles são mais propensos a mal contato, os conectores são mais caros e os cabos são menos flexíveis que os de par trançado, o que torna mais difícil passá-los por dentro de tubulações. No entanto, o principal motivo é o fato de que eles podem ser usados apenas em redes de 10 megabits: a partir do momento em que as redes 10/100 tornaram-se populares, eles entraram definitivamente em desuso, dando lugar aos cabos de par trançado.
A única exceção ficou por conta dos padrões 1000BASE-CX e 10GBASE-CX4, dois padrões para redes de curta distância que são baseados em cabos twinax, um cabo coaxial duplo, onde os dois fios são trançados (de forma similar a um cabo de par trançado) o que é combinado com uma blindagem mais espessa.
Os cabos de rede transmitem sinais elétricos a uma freqüência muito alta e a distâncias relativamente grandes, por isso são muito vulneráveis a interferências eletromagnéticas externas. Os cabos de par trançado são classificados em categorias, que indicam a qualidade do cabo e a freqüência máxima suportada por ele. Cada categoria é composta por um conjunto de características técnicas e de normas de fabricação, que precisam ser atendias pelos fabricantes.
Fabricar cabos de rede é mais complicado do que parece. Diferente dos cabos de cobre comuns, usados em instalações elétricas, os cabos de rede precisam suportar freqüências muito altas, causando um mínimo de atenuação do sinal. Para isso, é preciso minimizar ao máximo o aparecimento de bolhas e impurezas durante a fabricação dos cabos. No caso dos cabos de par trançado, é preciso ainda cuidar do entrançamento dos pares de cabos, que também é um fator crítico.
Os cabos de par trançados são compostos por 4 pares de fios de cobre que, como o nome sugere, são trançados entre si. Este sistema cria uma barreira eletromagnética, protegendo as transmissões de interferências externas, sem a necessidade de usar uma camada de blindagem. Este sistema sutil de proteção contrasta com a “força bruta” usada nos cabos coaxiais, onde o condutor central é protegido de interferências externas por uma malha metálica:
index_html_m41e064eb
O uso de tranças nos cabos é uma idéia antiga, que remonta ao final do século 19, quando a técnica passou a ser utilizada no sistema telefônico, de forma a aumentar a distância que o sinal era capaz de percorrer.
Originalmente, as tranças dos cabos não seguiam um padrão definido, mas com o passar do tempo número de tranças por metro, juntamente com outros detalhes técnicos foram padronizados. Isso permitiu que os cabos de par trançado, originalmente desenvolvidos para transportar sinais de voz, dessem um grande salto de qualidade, passando a atender redes de 10, 100, 1000 e recentemente de 10000 megabits, um salto realmente notável.
Nos cabos de par trançado, cada par de cabos utiliza um padrão de entrançamento diferente, com um número diferente de tranças por metro, como você pode ver na foto a seguir:
index_html_m6a914e56
Para potencializar o efeito da blindagem eletromagnética, as placas de rede utilizam o sistema balanced pair de transmissão, onde, dentro de cada par, os dois fios enviam o mesmo sinal (e não transmissões separadas, como geralmente se pensa), porém com a polaridade invertida. Para um bit “1″, o primeiro fio envia um sinal elétrico positivo, enquanto o outro envia um sinal elétrico negativo:
index_html_m62faf0ee
Ou seja, o segundo fio é usado para enviar uma cópia invertida da transmissão enviada através do primeiro, o que tira proveito das tranças do cabo para criar o campo eletromagnético que protege os sinais contra interferências externas, mesmo nos cabos sem blindagem. Devido a esta técnica de transmissão, os cabos de par trançado são também chamados de “balanced twisted pair”, ou “cabo de par trançado balanceado”.
À primeira vista, pode parecer um desperdício abrir mão de metade dos fios do cabo, mas sem isso o comprimento máximo dos cabos seria muito menor e as redes seriam muito mais susceptíveis a interferências.
Existem cabos de cat 1 até cat 7. Como os cabos cat 5 são suficientes tanto para redes de 100 quanto de 1000 megabits, eles são os mais comuns e mais baratos, mas os cabos cat 6 e cat 6a estão se popularizando e devem substituí-los ao longo dos próximos anos. Os cabos são vendidos originalmente em caixas de 300 metros, ou 1000 pés (que equivale a 304.8 metros):
index_html_m4858de07
No caso dos cabos cat 5e, cada caixa custa em torno de 200 reais aqui no Brasil, o que dá cerca 66 centavos o metro. Os cabos de categoria 6 e 6a ainda são mais caros, mas devem cair a um patamar de preço similar ao longo dos próximos anos.
Em todas as categorias, a distância máxima permitida é de 100 metros (com exceção das redes 10G com cabos categoria 6, onde a distância máxima cai para apenas 55 metros). O que muda é a freqüência e, conseqüentemente, a taxa máxima de transferência de dados suportada pelo cabo, e o nível de imunidade a interferências externas. Vamos então a uma descrição das categorias de cabos de par trançado existentes:
Categorias 1 e 2: Estas duas categorias de cabos não são mais reconhecidas pela TIA (Telecommunications Industry Association), que é a responsável pela definição dos padrões de cabos. Elas foram usadas no passado em instalações telefônicas e os cabos de categoria 2 chegaram a ser usados em redes Arcnet de 2.5 megabits e redes Token Ring de 4 megabits, mas não são adequados para uso em redes Ethernet.
Categoria 3: Este foi o primeiro padrão de cabos de par trançado desenvolvido especialmente para uso em redes. O padrão é certificado para sinalização de até 16 MHz, o que permitiu seu uso no padrão 10BASE-T, que é o padrão de redes Ethernet de 10 megabits para cabos de par trançado. Existiu ainda um padrão de 100 megabits para cabos de categoria 3, o 100BASE-T4 (veja meu artigo sobre os padrões Ethernet de 10 e 100 megabits), mas ele é pouco usado e não é suportado por todas as placas de rede.
A principal diferença do cabo de categoria 3 para os obsoletos cabos de categoria 1 e 2 é o entrançamento dos pares de cabos. Enquanto nos cabos 1 e 2 não existe um padrão definido, os cabos de categoria 3 (assim como os de categoria 4 e 5) possuem pelo menos 24 tranças por metro e, por isso, são muito mais resistentes a ruídos externos. Cada par de cabos tem um número diferente de tranças por metro, o que atenua as interferências entre os pares de cabos.
Categoria 4: Esta categoria de cabos tem uma qualidade um pouco superior e é certificada para sinalização de até 20 MHz. Eles foram usados em redes Token Ring de 16 megabits e também podiam ser utilizados em redes Ethernet em substituição aos cabos de categoria 3, mas na prática isso é incomum. Assim como as categorias 1 e 2, a categoria 4 não é mais reconhecida pela TIA e os cabos não são mais fabricados, ao contrário dos cabos de categoria 3, que continuam sendo usados em instalações telefônicas.
Categoria 5: Os cabos de categoria 5 são o requisito mínimo para redes 100BASE-TX e 1000BASE-T, que são, respectivamente, os pacotes de rede de 100 e 1000 megabits usados atualmente. Os cabos cat 5 seguem padrões de fabricação muito mais estritos e suportam freqüências de até 100 MHz, o que representa um grande salto sobre os cabos cat 3.
Apesar disso, é muito raro encontrar cabos cat 5 à venda atualmente, pois eles foram substituídos pelos cabos categoria 5e (o “e” vem de “enhanced”), uma versão aperfeiçoada do padrão, com normas mais estritas, desenvolvidas de forma a reduzir a interferência entre os cabos e a perda de sinal, o que ajuda em cabos mais longos, perto dos 100 metros permitidos.
Os cabos cat 5e devem suportar os mesmos 100 MHz dos cabos cat 5, mas este valor é uma especificação mínima e não um número exato. Nada impede que fabricantes produzam cabos acima do padrão, certificando-os para freqüências mais elevadas. Com isso, não é difícil encontrar no mercado cabos cat 5e certificados para 110 MHz, 125 MHz ou mesmo 155 MHz, embora na prática isso não faça muita diferença, já que os 100 MHz são suficientes para as redes 100BASE-TX e 1000BASE-T.
É fácil descobrir qual é a categoria dos cabos, pois a informação vem decalcada no próprio cabo, como na foto:
index_html_m11304441
Os cabos 5e são os mais comuns atualmente, mas eles estão em processo de substituição pelos cabos categoria 6 e categoria 6a, que podem ser usados em redes de 10 gigabit.
Categoria 6: Esta categoria de cabos foi originalmente desenvolvida para ser usada no padrão Gigabit Ethernet, mas com o desenvolvimento do padrão para cabos categoria 5 sua adoção acabou sendo retardada, já que, embora os cabos categoria 6 ofereçam uma qualidade superior, o alcance continua sendo de apenas 100 metros, de forma que, embora a melhor qualidade dos cabos cat 6 seja sempre desejável, acaba não existindo muito ganho na prática.
Os cabos categoria 6 utilizam especificações ainda mais estritas que os categoria 5e e suportam freqüências de até 250 MHz. Além de serem usados em substituição dos cabos cat 5 e 5e, eles podem ser usados em redes 10 gigabit, mas nesse caso o alcance é de apenas 55 metros.
index_html_m68b37059
Para permitir o uso de cabos de até 100 metros em redes 10G foi criada uma nova categoria de cabos, a categoria 6a (“a” de “augmented”, ou ampliado). Eles suportam freqüências de até 500 MHz e utilizam um conjunto de medidas para reduzir a perda de sinal e tornar o cabo mais resistente a interferências.
Você vai encontrar muitas referências na web mencionando que os cabos cat 6a suportam freqüências de até 625 MHz, que foi o valor definido em uma especificação preliminar. Mas, avanços no sistema de modulação permitiram reduzir a freqüência na versão final, chegando aos 500 MHz.
Uma das medidas para reduzir o crosstalk (interferências entre os pares de cabos) no cat 6a foi distanciá-los usando um separador. Isso aumentou a espessura dos cabos de 5.6 mm para 7.9 mm e tornou-os um pouco menos flexíveis. A diferença pode parecer pequena, mas ao juntar vários cabos ela se torna considerável:
index_html_7cd4de96index_html_5c47fb84
É importante notar que existe também diferenças de qualidade entre os conectores RJ-45 destinados a cabos categoria 5 e os cabos cat6 e cat6a, de forma que é importante checar as especificações na hora da compra.
Aqui temos um conector RJ-45 cat 5 ao lado de um cat 6. Vendo os dois lado a lado é possível notar pequenas diferenças, a principal delas é que no conector cat 5 os 8 fios do cabo ficam lado a lado, formando uma linha reta enquanto no conector cat 6 eles são dispostos em zig-zag, uma medida para reduzir o cross-talk e a perda de sinal:
index_html_m45e821cdindex_html_m7cc70c06
Embora o formato e a aparência seja a mesma, os conectores RJ-45 destinados a cabos cat 6 e cat 6a utilizam novos materiais, suportam freqüências mais altas e introduzem muito menos ruído no sinal. Utilizando conectores RJ-45 cat 5, seu cabeamento é considerado cat 5, mesmo que sejam utilizados cabos cat 6 ou 6a.
O mesmo se aplica a outros componentes do cabeamento, como patch-panels, tomadas, keystone jacks (os conectores fêmea usados em tomadas de parede) e assim por diante. Componentes cat 6 em diante costumam trazer a categoria decalcada (uma forma de os fabricantes diferenciarem seus produtos, já que componentes cat 6 e 6a são mais caros), como neste keystone jack onde você nota o “CAT 6″ escrito em baixo relevo:
index_html_m6a39cfb
Existem também os cabos categoria 7, que podem vir a ser usados no padrão de 100 gigabits, que está em estágio inicial de desenvolvimento.
Outro padrão que pode vir (ou não) a ser usado no futuro são os conectores TERA, padrão desenvolvido pela Siemon. Embora muito mais caro e complexo que os conectores RJ45 atuais, o TERA oferece a vantagem de ser inteiramente blindado e utilizar um sistema especial de encaixe, que reduz a possibilidade de mal contato:
index_html_m3ec04edd
Como citei, o TERA foi cogitado para ser usado nas redes de 10 Gigabit, mas a idéia foi abandonada. Agora ele figura como um possível candidato para as redes de 100 gigabits.
Cabos de padrões superiores podem ser usados em substituição de cabos dos padrões antigos, além de trazerem a possibilidade de serem aproveitados nos padrões de rede seguintes. Entretanto, investir em cabos de um padrão superior ao que você precisa nem sempre é uma boa idéia, já que cabos de padrões recém-introduzidos são mais caros e difíceis de encontrar. Além disso, não existe garantia de que os cabos usados serão mesmo suportados dentro do próximo padrão de redes até que ele esteja efetivamente concluído.
Por exemplo, quem investiu em cabos de categoria 6, pensando em aproveitá-los em redes de 10 gigabits acabou se frustrando, pois no padrão 10G a distância máxima usando cabos cat 6 caiu para apenas 55 metros e foi introduzido um novo padrão, o 6a. O mesmo pode acontecer com os cabos categoria 7; não existe nenhuma garantia de que eles sejam mesmo suportados no padrão de 100 gigabits. Pode muito bem ser introduzido um novo padrão de cabos, ou mesmo que os cabos de cobre sejam abandonados em favor dos de fibra óptica.
Continuando, temos também a questão da blindagem, que não tem relação direta com a categoria do cabo. Os cabos sem blindagem são mais baratos, mais flexíveis e mais fáceis de crimpar e por isso são de longe os mais populares, mas os cabos blindados podem prestar bons serviços em ambientes com forte interferência eletromagnética, como grandes motores elétricos ou grandes antenas de transmissão muito próximas.
Outras fontes menores de interferências são as lâmpadas fluorescentes (principalmente lâmpadas cansadas, que ficam piscando), cabos elétricos, quando colocados lado a lado com os cabos de rede, e mesmo telefones celulares muito próximos dos cabos. Este tipo de interferência não chega a interromper o funcionamento da rede, mas pode causar perda de pacotes.
No final de cada pacote frame Ethernet são incluídos 32 bits de CRC, que permitem verificar a sua integridade. Ao receber cada frame, a estação verifica se a soma dos bits bate com o valor do CRC. Sempre que a soma der errado, ela solicita a retransmissão do pacote, o que é repetido indefinidamente, até que ela receba uma cópia intacta. Sobre este sistema de verificação feito pelas placas de rede (nível 2 do modelo OSI) ainda temos a verificação feita pelo protocolo TCP (nível 4), que age de forma similar, verificando a integridade dos pacotes e solicitando retransmissão dos pacotes danificados. Esta dupla verificação garante uma confiabilidade muito boa.
Mesmo em uma rede bem cabeada, pacotes corrompidos esporadicamente são uma ocorrência normal, já que nenhum cabeamento é perfeito, mas um grande volume deles são um indício de que algo está errado. Quanto mais intensas for a interferência, maior será o volume de frames corrompidos e de retransmissões e pior será o desempenho da rede, tornando mais vantajoso o uso de cabos blindados.
Os cabos sem blindagem são chamados de UTP (Unshielded Twisted Pair, que significa, literalmente, “cabo de par trançado sem blindagem”). Os cabos blindados por sua vez, se dividem em três categorias: FTP, STP e SSTP.
Os cabos FTP (Foiled Twisted Pair) são os que utilizam a blindagem mais simples. Neles, uma fina folha de aço ou de liga de alumínio envolve todos os pares do cabo, protegendo-os contra interferências externas, mas sem fazer nada com relação ao crosstalk, ou seja, a interferência estre os pacotes de cabos:
index_html_2a00e7f1
Os cabos STP (Shielded Twisted Pair) vão um pouco além, usando uma blindagem individual para cada par de cabos. Isso reduz o crosstalk e melhora a tolerância do cabo com relação à distância, o que pode ser usado em situações onde for necessário crimpar cabos fora do padrão, com mais de 100 metros:
index_html_m6fbf1af5
Finalmente, temos os cabos SSTP (Screened Shielded Twisted Pair), também chamados de SFTP (Screened Foiled Twisted Pair), que combinam a blindagem individual para cada par de cabos com uma segunda blindagem externa, envolvendo todos os cabos, o que torna os cabos especialmente resistentes a interferências externas. Eles são mais adequados a ambientes com fortes fontes de interferências:
index_html_1ead600a
Para melhores resultados, os cabos blindados devem ser combinados com conectores RJ-45 blindados. Eles incluem uma proteção metálica que protege a parte destrançada do cabo que vai dentro do conector, evitando que ela se torne o elo mais fraco da cadeia:
index_html_m7d4839b2index_html_m75a25cb6
Quanto maior for o nível de interferência, menor será o desempenho da rede, menor será a distância que poderá ser usada entre os micros e mais vantajosa será a instalação de cabos blindados. Em ambientes normais, porém, os cabos sem blindagem funcionam perfeitamente bem, justamente por isso os cabos blindados são relativamente pouco usados.
Concluindo, existem também cabos de rede com fios sólidos e também cabos stranded (de várias fibras, também chamados de patch), onde os 8 fios internos são compostos por fios mais finos. Os cabos sólidos são os mais comuns e são os recomendados para uso geral, pois oferecem uma menor atenuação do sinal (cerca de 20% menos, considerando dois cabos de qualidade similar):
index_html_m50303ef2index_html_72237c82
Visão interna de um cabo sólido e de um cabo stranded
A única vantagem dos cabos stranded é que o uso de múltiplos fios tornam os cabos mais flexíveis, o que faz com que sejam muitas vezes preferidos para cabos de interconexão curtos (patch cords), usados para ligar os PCs à tomadas de parede ou ligar o switch ao patch panel (veja detalhes a seguir).
Dentro do padrão, os cabos feitos com cabos stranded não devem ter mais de 10 metros. Você pode usar um cabo sólido de até 90 metros até a tomada e um cabo stranded de mais 10 metros até o micro, mas não pode fazer um único cabo stranded de 100 metros.
Embora seja um detalhe pouco conhecido, existiram conectores RJ-45 próprios para cabos stranded, onde as facas-contato internas tinham a ponta arredondada. Estes conectores não funcionavam muito bem com cabos sólidos (o formato da faca-contato tornava o contato deficiente). Tínhamos então conectores específicos para cabos sólidos, que utilizavam facas-contato com três lâminas.
Estes dois tipos foram logo substituídos pelos conectores atuais, onde as facas-contato são pontudas, de forma a funcionarem bem com os dois tipos de cabos. Os conectores RJ45 com este tipo de contato (que são praticamente os únicos usados atualmente) são também chamados de conectores universais:

TCP/IP, endereçamento e portas

O endereçamento IP é sempre um tema importante, já que é ele que permite que o brutal número de redes e hosts que formam a Internet sejam capazes de se comunicar entre si.
Existem duas versões do protocolo IP: o IPV4 é a versão atual, que utilizamos na grande maioria das situações, enquanto o IPV6 é a versão atualizada, que prevê um número brutalmente maior de endereços e deve se popularizar a partir de 2012 ou 2014, quando os endereços IPV4 começarem a se esgotar.
No IPV4, os endereços IP são compostos por 4 blocos de 8 bits (32 bits no total), que são representados através de números de 0 a 255 (cobrindo as 256 possibilidades permitidas por 8 bits), como "200.156.23.43" ou "64.245.32.11". Os grupos de 8 bits que formam o endereço são chamados de "octetos", o que dá origem a expressões como "o primeiro octeto do endereço". De qualquer forma, a divisão dos endereços em octetos e o uso de números decimais serve apenas para facilitar a configuração para nós, seres humanos. Quando processados, os endereços são transformados em binários, como "11001000100110010001011100101011".
As faixas de endereços começadas com "10", "192.168" ou de "172.16" até "172.31" são reservadas para uso em redes locais e por isso não são usadas na Internet. Os roteadores que compõe a grande rede são configurados para ignorar pacotes provenientes destas faixas de endereços, de forma que as inúmeras redes locais que utilizam endereços na faixa "192.168.0.x" (por exemplo) podem conviver pacificamente, sem entrar em conflito.
No caso dos endereços válidos na Internet, as regras são mais estritas. A entidade global responsável pelo registro e atribuição dos endereços é a IANA (http://www.iana.org/), que delega faixas de endereços às RIRs (Regional Internet Registries), entidades menores, que ficam responsáveis por delegar os endereços regionalmente. Nos EUA, por exemplo, a entidade responsável é a ARIN (http://www.arin.net/) e no Brasil é a LACNIC (http://www.lacnic.net/pt/). Estas entidades são diferentes das responsáveis pelo registro de domínios, como o Registro.br.
As operadoras, carriers e provedores de acesso pagam uma taxa anual à RIR responsável, que varia de US$ 1.250 a US$ 18.000 (de acordo com o volume de endereços requisitados) e embutem o custo nos links revendidos aos clientes. Note que estes valores são apenas as taxas pelo uso dos endereços, não incluem o custo dos links, naturalmente.
Ao conectar via ADSL ou outra modalidade de acesso doméstico, você recebe um único IP válido. Ao alugar um servidor dedicado você recebe uma faixa com 5 ou mais endereços e, ao alugar um link empresarial você pode conseguir uma faixa de classe C inteira. Mas, de qualquer forma, os endereços são definidos "de cima para baixo" de acordo com o plano ou serviço contratado e você não pode escolher quais endereços utilizar.
Embora aparentem ser uma coisa só, os endereços IP incluem duas informações: o endereço da rede e o endereço do host dentro dela. Em uma rede doméstica, por exemplo, você poderia utilizar os endereços "192.168.1.1", "192.168.1.2" e "192.168.1.3", onde o "192.168.1." é o endereço da rede (e por isso não muda) e o último número (1, 2 e 3) identifica os três micros que fazem parte dela.
Os micros da rede local podem acessar a Internet através de um roteador, que pode ser tanto um servidor com duas placas de rede quando um modem ADSL ou outro dispositivo que ofereça a opção de compartilhar a conexão. Nesse caso, o roteador passa a ser o gateway da rede e utiliza seu endereço IP válido para encaminhar as requisições feitas pelos micros da rede interna. Esse recurso é chamado de NAT (Network Address Translation).
Um dos micros da rede local, neste caso, poderia usar esta configuração de rede:
Endereço IP: 192.168.1.2
Máscara: 255.255.255.0
Gateway: 192.168.1.1 (o servidor compartilhando a conexão)
DNS: 200.169.126.15 (o DNS do provedor)
O servidor, por sua vez, utilizaria uma configuração similar a esta:
Placa de rede 1 (rede local):
Endereço IP: 192.168.1.1
Máscara: 255.255.255.0
Placa de rede 2 (Internet):
Endereço IP: 200.213.34.21
Máscara: 255.255.255.0
Gateway: 200.213.34.1 (o gateway do provedor)
DNS: 200.169.126.15 (o DNS do provedor)
A configuração da segunda placa de rede seria obtida automaticamente, via DHCP, de forma que você só precisaria realmente se preocupar com a configuração da sua rede local. Normalmente, você primeiro configuraria a rede local, depois conectaria o servidor à Internet e, depois de checar as duas coisas, ativaria o compartilhamento da conexão via NAT.
O servidor DHCP incluído no ICS do Windows utiliza uma configuração fixa, fornecendo endereços dentro da faixa "192.168.0.x", mas ao utilizar um servidor Linux, ou qualquer outro dispositivo de rede que ofereça um servidor DHCP com mais recursos, você pode escolher qualquer faixa de endereços e também configurar uma "zona" para os endereços do servidor DHCP, permitindo que você tenha micros com IPs fixos e IPs dinâmicos (fornecidos pelo servidor DHCP) na mesma rede. Nesse caso, você poderia ter uma configuração como a seguinte:
192.168.0.1: Gateway da rede
192.168.0.2: Ponto de acesso wireless
192.168.0.3: Servidor de arquivos para a rede interna
192.168.0.4 até 192.168.0.99: Micros da rede configurados com IP fixo
192.168.0.100 até 192.168.0.254: Faixa de endereços atribuída pelo servidor DHCP
Veja que usar uma das faixas de endereços reservadas não impede que os PCs da sua rede possam acessar a Internet. Embora eles não acessem diretamente, por não possuírem IPs válidos, eles podem acessar através de uma conexão compartilhada via NAT ou de um servidor proxy. É possível, inclusive, configurar o firewall ativo no gateway da rede para redirecionar portas (port forwarding) para micros dentro da rede local, de forma que eles possam ser acessados remotamente. O servidor nesse caso "empresta" uma porta, ou uma determinada faixa de portas, para o endereço especificado dentro da rede local. Quando alguém da Internet acessa uma das portas encaminhadas no servidor, é automaticamente redirecionado para a porta correspondente no micro da rede interna, de forma transparente.
O uso dos endereços de rede local tem aliviado muito o problema da falta de endereços IP válidos, pois uma quantidade enorme de empresas e usuários domésticos, que originalmente precisariam de uma faixa de endereços completa para colocar todos os seus micros na Internet, pode sobreviver com um único IP válido (compartilhado via NAT entre todos os micros da rede). Em muitos casos, mesmo provedores de acesso chegam a vender conexões com endereços de rede interna nos planos mais baratos, como, por exemplo, alguns planos de acesso via rádio, onde um roteador com um IP válido distribui endereços de rede interna (conexão compartilhada) para os assinantes.
Embora seja possível, pelo menos em teoria, ter redes com até 24 milhões de PCs, usando a faixa de endereços de rede local 10.x.x.x, na prática é raro encontrar segmentos de rede com mais de 100 ou 200 micros. Conforme a rede cresce, o desempenho acaba caindo, pois, mesmo ao utilizar um switch, sempre são transmitidos alguns pacotes de broadcast (que são retransmitidos a todos os micros do segmento). A solução nesse caso é dividir a rede em segmentos separados, interligados por um roteador.
Em uma empresa, poderíamos (por exemplo) ter três segmentos diferentes, um para a rede cabeada (e a maior parte dos micros), outro para a rede wireless e outro para os servidores, que ficariam isolados em uma sala trancada.
O roteador nesse caso teria 4 interfaces de rede (uma para cada um dos três segmentos e outra para a Internet). A vantagem de dividir a rede desta maneira é que você poderia criar regras de firewall no roteador, especificando regras diferentes para cada segmento. Os micros conectados à rede wireless (menos segura), poderiam não ter acesso aos servidores, por exemplo. Quando falo em "roteador", tenha em mente que você pode perfeitamente usar um servidor Linux com diversas placas de rede.
Com relação à proteção da rede contra acessos provenientes da Internet, você poderia tanto configurar o próprio firewall ativo no roteador, de forma a proteger os micros da rede local quanto instalar um firewall dedicado (que pode ser um PC com duas placas de rede, configurado adequadamente) entre ele e a Internet:
Voltando à questão dos endereços: inicialmente os endereços IP foram divididos em classes, denominadas A, B, C, D e E. Destas, apenas as classe A, B e C são realmente usadas, já que as classes D e E são reservadas para recursos experimentais e expansões futuras.
Cada classe reserva um número diferente de octetos para o endereçamento da rede. Na classe A, apenas o primeiro octeto identifica a rede, na classe B são usados os dois primeiros octetos e na classe C temos os três primeiros octetos reservados para a rede e apenas o último reservado para a identificação dos hosts dentro dela.
O que diferencia uma classe de endereços da outra é o valor do primeiro octeto. Se for um número entre 1 e 126 temos um endereço de classe A. Se o valor do primeiro octeto for um número entre 128 e 191, então temos um endereço de classe B e, finalmente, caso o primeiro octeto seja um número entre 192 e 223, temos um endereço de classe C.
Ao configurar uma rede local, você pode escolher a classe de endereços mais adequada. Para uma pequena rede, uma faixa de endereços de classe C (como a tradicional 192.168.0.x com máscara 255.255.255.0) é mais apropriada, pois você precisa se preocupar em configurar apenas o último octeto do endereço ao atribuir os endereços. Em uma rede de maior porte, com mais de 254 micros, passa a ser necessário usar um endereço de classe B (com máscara 255.255.0.0), onde podemos usar diferentes combinações de números nos dois últimos octetos, permitindo um total de 65.534 endereços.
Continuando, temos a configuração das máscaras de sub-rede, que servem para indicar em que ponto termina a identificação da rede e começa a identificação do host. Ao usar a máscara "255.255.255.0", por exemplo, indicamos que os três primeiros números (ou octetos) do endereço servem para identificar a rede e apenas o último indica o endereço do host dentro dela.
Como vimos, na divisão original (que não é mais usada hoje em dia, como veremos a seguir) os endereços das três faixas eram diferenciados pelo número usado no primeiro octeto. Os endereços de classe A começavam com números de 1 a 126 (como, por exemplo, "62.34.32.1"), com máscara 255.0.0.0. Cada faixa de endereços classe A era composta de mais de 16 milhões de endereços mas, como existiam apenas 126 delas, elas eram reservadas para o uso de grandes empresas e órgãos governamentais.
Em seguida tínhamos os endereços de classe B, que englobavam os endereços iniciados com de 128 a 191, com máscara 255.255.0.0 (criando faixas compostas por 65 mil endereços) e o "terceiro mundo", que eram as faixas de endereços classe C. Elas abrangiam os endereços que começam com números de 192 a 223. As faixas de endereços de classe C eram mais numerosas, pois utilizavam máscara 255.255.255.0, mas, em compensação, cada faixa de classe C era composta por apenas 254 endereços. Veja alguns exemplos:

Ex. de endereço IP
Classe do endereço
Parte referente à rede
Parte referente ao host
Máscara de sub-rede padrão
98.158.201.128
Classe A
98.
158.201.128
255.0.0.0 (rede.host.host.host)
158.208.189.45
Classe B
158.208.
189.45
255.255.0.0 (rede.rede.host.host)
208.183.34.89
Classe C
208.183.34.
89
255.255.255.0
(rede.rede.rede.host)
Ao alugar um backbone vinculado a uma faixa de endereços classe C, por exemplo, você receberia uma faixa de endereços como "203.107.171.x", onde o "203.107.171" é o endereço de sua rede dentro da Internet, e o "x" é a faixa de 254 endereços que você pode usar para identificar seus servidores e os hosts dentro da rede. Na ilustração temos um resumo das regras para endereços TCP/IP válidos:
Como você pode notar no diagrama, nem todas as combinações de endereços são permitidas, pois o primeiro endereço (0) é reservado à identificação da rede, enquanto o último (255) é reservado ao endereço de broadcast, que é usado quando alguma estação precisa enviar um pacote simultaneamente para todos os micros dentro do segmento de rede.
Os pacotes de broadcast são usados para, por exemplo, configurar a rede via DHCP e localizar os compartilhamentos de arquivos dentro de uma rede Windows (usando o antigo protocolo NetBIOS). Mesmo os switches e hub-switches detectam os pacotes de broadcast e os transmitem simultaneamente para todas as portas. A desvantagem é que, se usados extensivamente, eles prejudicam o desempenho da rede.
Veja alguns exemplos de endereços inválidos:
0.xxx.xxx.xxx: Nenhum endereço IP pode começar com zero, pois ele é usado para o endereço da rede. A única situação em que um endereço começado com zero é usado, é quando um servidor DHCP responde à requisição da estação. Como ela ainda não possui um endereço definido, o pacote do servidor é endereçado ao endereço MAC da estação e ao endereço IP "0.0.0.0", o que faz com que o switch o envie para todos os micros da rede.
127.xxx.xxx.xxx: Nenhum endereço IP pode começar com o número 127, pois essa faixa de endereços é reservada para testes e para a interface de loopback. Se por exemplo você tiver um servidor de SMTP e configurar seu programa de e-mail para usar o servidor 127.0.0.1, ele acabará usando o servidor instalado na sua própria máquina. O mesmo acontece ao tentar acessar o endereço 127.0.0.1 no navegador: você vai cair em um servidor web habilitado na sua máquina. Além de testes em geral, a interface de loopback é usada para comunicação entre diversos programas, sobretudo no Linux e outros sistemas Unix.
255.xxx.xxx.xxx, xxx.255.255.255, xxx.xxx.255.255: Nenhum identificador de rede pode ser 255 e nenhum identificador de host pode ser composto apenas de endereços 255, seja qual for a classe do endereço, pois estes endereços são usados para enviar pacotes de broadcast. Outras combinações são permitidas, como em 65.34.255.197 (em um endereço de classe A) ou em 165.32.255.78 (endereço de classe B).
xxx.0.0.0, xxx.xxx.0.0: Nenhum identificador de host pode ser composto apenas de zeros, seja qual for a classe do endereço, pois estes endereços são reservados para o endereço da rede. Como no exemplo anterior, são permitidas outras combinações como 69.89.0.129 (classe A) ou 149.34.0.95 (classe B).
xxx.xxx.xxx.255, xxx.xxx.xxx.0: Nenhum endereço de classe C pode terminar com 0 ou com 255, pois, como já vimos, um host não pode ser representado apenas por valores 0 ou 255, já que eles são usados para o envio de pacotes de broadcast.
Dentro de redes locais, é possível usar máscaras diferentes para utilizar os endereços IP disponíveis de formas diferentes das padrão. O importante neste caso é que todos os micros da rede sejam configurados com a mesma máscara, caso contrário você terá problemas de conectividade, já que tecnicamente os micros estarão em redes diferentes.
Um exemplo comum é o uso da faixa de endereços 192.168.0.x para redes locais. Originalmente, esta é uma faixa de endereços classe C e por isso a máscara padrão é 255.255.255.0. Mesmo assim, muita gente prefere usar a máscara 255.255.0.0, o que permite mudar os dois últimos octetos (192.168.x.x). Neste caso, você poderia ter dois micros, um com o IP "192.168.2.45" e o outro com o IP "192.168.34.65" e ambos se enxergariam perfeitamente, pois entenderiam que fazem parte da mesma rede. Não existe problema em fazer isso, desde que você use a mesma máscara em todos os micros da rede.

10 Gigabit Ethernet

Com o lançamento do padrão 1000BASE-T, em 1999, os membros do grupo de trabalho 802.3 ficaram livres para iniciar os trabalhos no padrão seguinte. Mantendo a tradição, decidiram desenvolver um padrão capaz de atingir taxas de transferência 10 vezes maiores que o anterior, dando origem ao 10 Gigabit Ethernet (10G), que transmite a espantosos 10 gigabits por segundo.
Aumentar por 10 a taxa de transferência a cada novo padrão de rede pode parecer um exagero, mas como a migração para novos padrões de redes é bem mais lenta do que para novos processadores ou novas tecnologias de memória, por exemplo, passos maiores acabam sendo necessários, caso contrário poucos se dariam o trabalho de atualizar os equipamentos.
Como previsto na célebre lei de Moore, o poder de processamento dos processadores e controladores em geral dobra em média a cada 18 meses, sendo que o custo continua mais ou menos constante. Com isso, em um período de 54 meses temos controladores 8 vezes mais rápidos, e assim por diante, o que torna a tarefa de desenvolver novos padrões de rede relativamente simples.
O maior problema é que o cabeamento não evolui na mesma velocidade dos controladores, o que obriga o comitê a levar os cabos popularmente usados até o limite antes de jogar a toalha e migrar para um padrão de cabos mais caros e de melhor qualidade.
Um exemplo disso são os cabos de par trançado categoria 5, que foram desenvolvidos para o uso em redes de 100 megabits, mas que acabaram tendo sua vida útil estendida com o padrão 1000BASE-T graças à adoção de um sistema mais sofisticado de modulação e ao uso dos quatro pares do cabo.
Assim como no Gigabit Ethernet, o desenvolvimento do 10 Gigabit Ethernet começou nos cabos de fibra óptica, que oferecem um desafio técnico menor, com o padrão para cabos com fios de cobre sendo finalizado por último. Muitos julgavam que seria impossível criar um padrão 10G para cabos de par trançado (afinal, estamos falando de uma taxa de transmissão 1000 vezes maior que a do padrão 10BASE-T original), mas no final acabaram conseguindo, embora com algumas baixas.
Os padrões 10G para cabos de fibra óptica se dividem em duas categorias: os padrões de longa distância, que utilizam cabos de fibra monomodo e os padrões de curta distância, que utilizam cabos de fibra multimodo e transmissores mais baratos.
O objetivo dos padrões de longa distância é complementar os padrões de 100 e 1000 megabits, oferecendo uma solução capaz de interligar redes distantes com uma velocidade comparável ou superior a dos backbones DWDM e SONET, tecnologias muito mais caras, utilizadas atualmente nos backbones da Internet.
Suponha, por exemplo, que você precise interligar 5.000 PCs, divididos entre a universidade, o parque industrial e a prefeitura de uma grande cidade. Você poderia utilizar um backbone 10 Gigabit Ethernet para os backbones principais, unindo os servidores dentro dos três blocos e ligando-os à Internet, usar uma malha de switches Gigabit Ethernet para levar a rede até as salas de aula e departamentos e, finalmente, usar switches baratos de 100 megabits para levar a rede aos alunos e funcionários, complementando com pontos de acesso 802.11b/g para oferecer também uma opção de rede sem fio.
Isso estabelece uma pirâmide, onde os usuários individuais possuem conexões relativamente lentas, de 11, 54 ou 100 megabits, interligadas entre si e entre os servidores pelas conexões mais rápidas e caras, formando um sistema capaz de absorver várias chamadas de videoconferência simultâneas, por exemplo.
Outra aplicação em destaque é o próprio uso em backbones de acesso à Internet. Usando o 10G, um único cabo de fibra óptica transmite o equivalente a mais de 600 linhas T1 (de 1.5 megabits cada), cada uma suficiente para atender uma empresa de médio porte, um prédio residencial ou mesmo um pequeno provedor de acesso via rádio, ou seja, com um único link 10G temos banda suficiente para atender com folga a uma cidade de médio porte.
Entre os padrões de longa distância temos o 10GBASE-LR (Long Range) que utiliza laseres de 1310 nm e oferece um alcance de até 10 km (com a possibilidade de atingir distâncias maiores utilizando cabos de alta qualidade), o 10GBASE-ER (Extended Range), que utiliza laseres de 1550 nm e é capaz de cobrir distâncias de até 40 km e o novo 10GBASE-ZR, desenvolvido de forma independente pela Cisco e outros fabricantes, que estende o alcance máximo para incríveis 80 km.
Nos três casos, a distância máxima pode ser estendida usando amplificadores de sinal e repetidores, de forma o que o link pode ser estendido a distâncias muito grandes, criando backbones e interligando redes.
Em seguida temos os padrões de curta distância, destinados ao uso em datacenters e em redes locais. Como citei, eles são baseados em fibras multimodo, que ao contrário das fibras monomodo usadas nos padrões de longa distância, já são bastante acessíveis.
Atualmente temos apenas dois padrões: o 10GBASE-SR (Short Rage) utiliza a tecnologia short-wave laser, similar à utilizada no 1000BASE-SX e é capaz de atingir até 300 metros, dependendo da qualidade do cabo usado, enquanto o 10GBASE-LRM permite o uso de fibras com núcleo de 62.5 microns, um tipo de fibra de baixa qualidade, tipicamente usadas em redes 100BASE-FX. Quando usadas no 10GBASE-SR, estas fibras suportam distâncias muito curtas (até 26 metros), mas no 10GBASE-LRM elas suportam até 220 metros, daí a sigla LRM, de "Long Reach Multimode".

Placa 10GBASE-SR em versão PCI-X
Tradicionalmente, o mais comum é que os padrões de fibra óptica de curta distância sejam usados para criar backbones, interligando os switches e roteadores em diferentes segmentos da rede, enquanto os padrões para cabos de cobre, sejam usados nos pontos individuais.
Assim como fez no Gigabit Ethernet, o grupo de trabalho começou desenvolvendo um padrão para cabos de cobre de curta distância para uso em datacenters. Surgiu então o 10GBASE-CX4, que utiliza quatro pares de cabos twinax para transmitir dados a até 15 metros. Os cabos 10GBASE-CX4 utilizam um conector especial, similar ao utilizado no InfiniBand, uma tecnologia de rede utilizada em clusters e SANs. Não é possível crimpar os cabos CX4; eles são comprados já no comprimento desejado. Aqui temos uma placa PCI-Express x8 e o detalhe do conector:
O 10GBASE-CX4 é um padrão mais barato que os baseados em cabos de fibra, já que não é necessário usar o transceiver (um componente bastante caro, que contém os transmissores e receptores ópticos). Mas, como era de se esperar, ele entrou em desuso com a popularização do padrão 10GBASE-T (ou 802.3an), que é o padrão baseado em cabos de par trançado.
Inicialmente, falou-se no uso de cabos categoria 7 combinados com conectores TERA e no possível suporte a cabos de categoria 5a no padrão 10GBASE-T, mas ambas as idéias acabaram sendo descartadas em favor dos cabos categoria 6 e categoria 6a.
Usar cabos categoria 5e no 10G não seria impossível, mas exigiria um sistema de modulação muito complexo, que encareceria excessivamente as placas e os switches. Além disso, a distância seria muito curta (possivelmente algo próximo dos 15 metros do 10GBASE-CX4), o que acabaria com a utilidade prática do padrão.
Para entender a dificuldade em criar um padrão 10G para cabos cat 5e, nada melhor do que entender um pouco melhor como o 10GBASE-T funciona. Se você achou as explicações sobre o 100BASE-TX e sobre o 1000BASE-T complicadas, se prepare, pois esta é ainda mais indigesta. :)
Você deve lembrar que no 1000BASE-T é usado o sistema PAM-5 de modulação, onde 5 sinais distintos são usados para transmitir 2 bits por baud (combinados com informações de controle). Com isso, os 1000 megabits são transmitidos em apenas 500 megabauds, ou seja, 125 megabauds em cada um dos 4 pares de cabos.
O 10GBASE-T adota um sistema de modulação bem mais complexo, o PAM-16 que, como o nome sugere, é baseado no uso de 16 sinais distintos em cada par, cada um representado por um nível de tensão diferente. Para efeito de comparação, no 100BASE-TX existe uma diferença de 1V entre cada nível, no 1000BASE-T a diferença cai para apenas 0.5V e no 10GBASE-T cai para apenas 0.13V, o que torna a questão do cabeamento progressivamente mais crítica:
Originalmente, 16 estados permitiriam o envio de 4 bits por baud, por par. Mas, como de praxe, é necessário enviar também informações de controle, de forma que são transmitidos o equivalente a 3.125 bits por baud (3 bits e mais um bit adicional a cada 8 bauds), o que permite que os 10.000 megabits sejam transmitidos em apenas 3200 megabauds. Como os 4 pares de cabos são usados simultaneamente, temos então 800 megabauds por par de cabos.
Assim como no 1000BASE-T, cada baud demora apenas meio ciclo para ser transmitido, o que reduz a freqüência de transmissão. Mesmo assim, os 800 megabauds resultam em uma freqüência de 400 MHz, muito além dos 100 MHz suportados pelos cabos cat 5.
Os próximos da lista são os cabos de categoria 6, que suportam freqüências de até 250 MHz e são construídos dentro de normas muito mais estritas com relação à atenuação do sinal e ao crosstalk. Apesar da freqüência ser mais baixa que o exigido, foi possível incluir suporte a eles dentro do padrão, mas apenas para distâncias curtas, de apenas 55 metros.
Isso acontece porque a freqüência suportada pelo cabo não é um valor exato, mas sim a freqüência para a qual ele é certificado para transmissão a 100 metros. Um cabo cat 5 poderia transportar sinais a mais de 100 MHz, mas a atenuação faria com que eles não chegassem ao final dos 100 metros com uma qualidade aceitável.
Reduzindo o comprimento do cabo, reduzimos a atenuação, o que permite que os cabos suportem a transmissão de sinais de freqüência mais alta, mas apenas a distâncias curtas. No caso dos cabos cat 6, foi comprovado que eles são capazes de transmitir os sinais de 400 MHz do 10GBASE-T, mas apenas a até 55 metros, daí a especificação.
Na prática, alguns cabos cat 5e que excedem a especificação também suportam a freqüência de 400 MHz em distâncias mais curtas. Se você tiver sorte, pode ter sucesso usando um cabo de 10 ou 20 metros, por exemplo. Entretanto, padrões precisam funcionar "sempre" e não "às vezes" e justamente por isso os cat 5e foram removidos da especificação final.
Para que fosse possível o uso de cabos de até 100 metros, como nos padrões anteriores, foi criado o padrão cat 6a, que suporta freqüências de até 500 MHz e é baseado em normas ainda mais estritas.
Embora ainda sejam mais caros, os cabos cat 6a tendem a cair de preço conforme a tecnologia for se popularizando, permitindo uma migração gradual. A partir do momento em que a diferença de preço não for um impedimento, vale à pena passar a utilizar cabos categoria 6a em todas as novas instalações, mesmo nas destinadas a redes de 100 e 1000 megabits, já que o padrão superexcede o padrão cat5e e o cat6.
Atualmente, ainda estamos assistindo à migração do Fast Ethernet para o Gigabit Ethernet, por isso a migração para o padrão 10G nas redes domésticas ainda deve demorar. As placas 10GBASE-T do início de 2008 ainda custam acima de 1000 dólares, além de consumirem muita energia (muitas consomem mais de 25 watts), o que restringe seu uso aos servidores.
Mesmo que a lei de Moore continue em vigor ao longo dos próximos anos, ainda vai demorar até que sejam desenvolvidos controladores 10G compactos e baratos o suficiente para serem integrados às placas-mãe, como no caso dos chips Gigabit Ethernet.
Além disso, existe a questão prática. Como a maioria das redes são usadas para acessar a web e transferir arquivos entre os PCs e os servidores da rede, existe pouca demanda por um padrão de rede mais rápido, pois mesmo o Gigabit Ethernet raramente tem chance de mostrar seu potencial, já que é gargalado pelo desempenho dos HDs e outros periféricos. De nada adianta uma interface de rede mais rápida, se o HD o servidor do servidor é capaz de ler os dados a apenas 60 MB/s, por exemplo.
A médio prazo, as redes locais continuarão sendo baseadas em interfaces de 100 e 1000 megabits e o 10G passará a ser utilizado para interligar os switches da rede, evitando o gargalo causado pelo uso de um único link gigabit para interligar switches com 24 ou 48 clientes cada um. Só bem adiante é que devemos assistir à popularização do 10G nos desktops.
O 10G representa também o fim dos hubs, dos repetidores e dos links half-duplex, que foram substituídos pelo uso exclusivo de links full-duplex ponto a ponto, entre as estações, switches e roteadores da rede. Com isso, deixa de ser usado também o CSMA/CD, o sistema de detecção de colisões que é utilizado desde os primeiros padrões Ethernet.
Embora você ainda possa ligar vários switches em cascata, com cabos cat 6a de 100 metros cada um para obter distâncias maiores, a idéia é que você utilize um dos padrões de cabos de fibra óptica quando precisar atingir distâncias maiores. Com os 10 km oferecidos pelo 10GBASE-LR e os 40 km oferecidos pelo 10GBASE-ER, cobrir grandes distâncias deixou de ser um problema.

Gigabit Ethernet

Depois dos padrões de 10 e 100 megabits, o passo natural para as redes Ethernet seria novamente multiplicar por 10 a taxa de transmissão, atingindo 1000 megabits. E foi justamente o que aconteceu. O padrão Gigabit Ethernet começou a ser desenvolvido pelo IEEE em 1995, assim que o padrão de 100 megabits foi ratificado (como muitos dizem, antes mesmo que a tinta tivesse tempo de secar) e acabou sendo ratificado em 1998, dando origem ao 802.3z, composto por quatro padrões diferentes.
O 1000BASE-LX é o padrão mais caro, que suporta apenas cabos de fibra óptica. Até o 100BASE-FX, os transmissores de rede para fibra óptica podiam utilizar LEDs, que são uma tecnologia muito mais barata. O problema é que os LEDs não são capazes de mudar de estado rápido o suficiente para atenderem os requisitos do sistema de modulação adotado no gigabit Ethernet, de forma que a única saída foi adotar a tecnologia long-wave laser, com o uso de lasers de 1300 nanômetros.
Em troca, o 1000BASE-LX oferece um alcance muito maior do que o oferecido pelos padrões anteriores. Oficialmente, usando cabos de fibra óptica monomodo com núcleo de 9 mícrons, o sinal é capaz de percorrer distâncias de até 2 km, mas na prática o sinal é capaz de atingir distâncias muito maiores, o que fez com que muitos fabricantes anunciassem produtos baseados no 1000BASE-LX com alcance de até 10 km. Isso tornou o padrão atrativo para uso em backbones, interligando diferentes segmentos de rede no campus de uma universidade ou em prédios próximos, por exemplo. É possível também utilizar cabos multimodo com núcleo de 50 ou 62.5 mícrons (que são os cabos mais baratos), mas nesse caso o sinal percorre apenas 550 metros.
O segundo padrão é o 1000BASE-SX, que também utiliza cabos de fibra óptica, mas utiliza uma tecnologia de transmissão mais barata, chamada short-wave laser, que é uma derivação da mesma tecnologia usada em CD-ROMs, com feixes de curta distância. Justamente por já ser utilizado em diversos dispositivos, esta tecnologia é mais barata, mas em compensação o sinal é capaz de atingir distâncias menores. Utilizando cabos multimodo com núcleo de 50 microns a distância máxima é de 500 metros e usando cabos com núcleo de 62.5 microns a distância máxima é de 275 metros (sinalização de 200 MHz) ou 220 metros (sinalização de 160 MHz).
Foi criado também um padrão para distâncias curtas, o 1000BASE-CX, que ao invés de fibra óptica utiliza dois pares de cabo de par trançado blindado STP ou SSTP (de forma similar ao 100BASE-TX, onde são também utilizados apenas dois pares do cabo). Embora pouco usados, são suportados também cabos twinax, que são um tipo de cabo coaxial duplo, também blindado.
O problema é que no 1000BASE-CX o alcance é de apenas 25 metros, o que limita bastante o seu uso. Ele é usado em alguns modelos de blade servers e outros produtos destinados ao uso em datacenters (onde vários servidores são instalados no mesmo rack e a distância a cobrir é pequena), mas ele praticamente desapareceu depois que o padrão 1000BASE-T foi finalizado.
Inicialmente, parecia impossível desenvolver um padrão Gigabit Ethernet para cabos de par trançado sem blindagem, que fosse capaz de atingir os 100 metros oferecidos pelo padrão Fast Ethernet, já que o 100BASE-TX já havia explorado grande parte do potencial dos cabos categoria 5. Mas, contra todas as expectativas, o grupo de trabalho conseguiu finalizar o padrão 1000BASE-T (802.3ab) em 1999, abrindo uma nova fronteira para as redes domésticas.
O 1000BASE-T, também chamado de GoC ou "Gigabit over Copper", permite utilizar os mesmos cabos de par trançado categoria 5 que as redes de 100 megabits. Isso representa uma enorme economia, não apenas por eliminar a necessidade de trocar os cabos atuais por cabos mais caros, mas também nas próprias placas de rede, que passam a ser uma evolução das atuais e não uma tecnologia nova. O alcance continua sendo de 100 metros e os switches compatíveis com o padrão são capazes de combinar nós de 10, 100 e 1000 megabits, sem que os mais lentos atrapalhem os demais. Toda esta flexibilidade torna a migração para o 1000BASE-T bastante simples, uma vez que você pode aproveitar o cabeamento já existente.
A solução para conseguir multiplicar por 10 a taxa de transmissão, mantendo o uso de cabos cat 5 foi adotar um sistema de sinalização mais complexo, que utiliza todos os 4 pares do cabo (de forma similar ao 100BASE-T4, que utilizava um artifício similar para conseguir transmitir 100 megabits utilizando cabos cat 3).
Em primeiro lugar, é usado o sistema PAM-5 de modulação (diferente dos outros padrões gigabit, onde é usado o 8B10B) que consiste no uso de 5 sinais distintos (em vez de apenas dois), que permitem o envio de 2 bits por baud, junto com informações de controle. Com o uso dos 4 pares de cabos, é possível enviar então 8 bits por baud, o que resulta em uma taxa de sinalização de apenas 125 megabauds. Aplicando um sistema similar ao usado no 100BASE-TX, é possível reduzir a freqüência efetiva para apenas 62.5 MHz, transmitindo 2 bauds por ciclo. A freqüência é o dobro da usada no 100BASE-TX, mas ainda fica dentro dos limites dos cabos de categoria 5.
Esta idéia de transmitir vários bits por baud, utilizando vários níveis de sinal distintos, é uma técnica antiga, que foi usada ao limite nos modems discados para obter taxas de transferências mais altas usando o sistema telefônico comutado. Um modem V92 de 56k, por exemplo, transmite 7 bits por baud, de forma a fazer seu trabalho transmitindo apenas 8.000 bauds por segundo. Entretanto, esta tecnologia exige uma modulação mais complexa, o que aumenta o processamento necessário para realizar a transmissão. É por isso que ela passou a ser usada em redes apenas quando as limitações do cabeamento se tornaram evidentes.
Continuando, temos o segundo "milagre" do 1000BASE-T, que é o suporte ao modo full-duplex. Como você deve lembrar, o 100BASE-TX obtinha full-duplex utilizando dois pares de cabos, um para transmitir e outro para receber. Como o 1000BASE-T utiliza todos os 4 pares ao mesmo tempo, transmitir e receber simultaneamente parecia impossível.
Para resolver o problema, foi desenvolvido um sistema engenhoso, que permite que os mesmos pares de cabos sejam usados para enviar e receber dados simultaneamente. Enviar duas transmissões ao mesmo tempo, no mesmo cabo, faz com que as duas transmissões colidam, gerando um eco que é a combinação das duas. Como cada estação tem armazenado na memória o conteúdo da transmissão que acabou de fazer, é capaz de subtrair sua própria transmissão do sinal recebido, obtendo assim o sinal enviado pelo interlocutor.
Com isso, é possível transmitir 1 gigabit em cada direção permitindo que, em situações onde a estação envie e receba um grande volume de dados simultaneamente, seja possível atingir 2 gigabits somando o tráfego nas duas direções. Entretanto, o mais comum é uma relação assimétrica, com uma falando e a outra apenas enviando os pacotes de confirmação, cenário em que o uso do full-duplex traz um ganho marginal.
Apesar disso, alguns fabricantes tiram proveito do full-duplex para anunciar suas placas gigabit como placas de "2 gigabits", assim como alguns vendiam placas fast Ethernet como sendo placas de "200 megabits", novamente em alusão ao modo full-duplex.
Continuando, o uso dos 4 pares e o sistema de sinalização mais complexo tornam o 1000BASE-T muito mais exigente com relação à qualidade do cabeamento que os padrões anteriores. Por exemplo, as placas 100BASE-TX utilizam apenas dois pares do cabo, de forma que a rede pode funcionar com cabos mal crimpados, ou mesmo com cabos com alguns dos fios internos rompidos, desde que os dois pares usados para transmitir dados estejam intactos, mas você não teria a mesma sorte com o 1000BASE-T.
O sistema mais simples de sinalização também torna a rede menos sensível a interferência, ao uso de cabos de baixa qualidade, ou ao uso de cabos mais longos que os 100 metros permitidos. No 1000BASE-T, todos estes problemas saltam à vista, reduzindo a velocidade da rede (devido às retransmissões), tornando-a instável, ou simplesmente impedindo seu funcionamento. Mesmo detalhes como o comprimento da parte destrançada do cabo ao crimpar o conector acabam fazendo diferença, de forma que é necessário redobrar o cuidado ao crimpar os cabos.
Outro fator digno de nota é que, como em quase todo novo padrão, as placas 1000BASE-T eram originalmente muito mais caras que as de 100 megabits, já que o maior processamento necessário tornava o design da placa muito mais complexo, demandando o uso de dois ou mais controladores complexos.
No entanto, com a miniaturização dos componentes, logo surgiram soluções integradas em um único chip e o maior volume de produção fez com que os preços fossem caindo progressivamente. Hoje em dia, a maioria das placas-mãe já trazem chipsets de rede gigabit onboard e os switches gigabit também estão cada vez mais acessíveis, de forma que muitos acabam migrando para o novo padrão sem sequer perceber, enquanto atualizam os equipamentos de rede.
Temos aqui uma placa gigabit de 1999, produzida pela Intel, ao lado de um chip Marvell Yukon 88E8052, usado em muitas placas-mãe atuais com rede gigabit onboard, que ilustra a diferença de complexidade (e de custo) entre as duas gerações:
Assim como no caso das placas de 100 megabits, existe um grande número de placas Gigabit Ethernet em versão PCI. O problema é que, por um conjunto de fatores, o barramento PCI oferece, na prática, pouco mais de metade da taxa teórica de transmissão. Com isso, embora os 133 MB/s sejam suficientes para uma placa de rede gigabit, na prática as placas gigabit em versão PCI acabam sendo limitadas pelo barramento, oferecendo taxas de transmissão de 500 a 700 megabits, variando de acordo com a placa e o chipset usados. Além das placas offboard, muitas placas gigabit onboard são internamente ligadas ao barramento PCI do chipset e têm por isso sua taxa de transmissão limitada de forma similar.
Com isso, tivemos a terceira migração de barramento na história das placas de rede (sem contar as placas em versão PCI-X, destinadas a servidores), que passaram a utilizar o barramento PCI-Express, que oferece 250 MB/s em cada direção, por linha de dados (um slot PCI Express pode ter de uma a 16 linhas de dados), o que permite que mesmo um slot x1 atenda com folga uma placa Gigabit Ethernet:

Placa Gigabit Ethernet em versão PCI Express
A próxima fronteira são as placas de 10 Gigabits, que em teoria precisam de um slot PCI Express x8 (com oito linhas de dados, ou seja, 2 GB/s) para mostrarem todo o seu potencial.
Continuando, assim como as placas de 100 megabits, as placas gigabit são completamente compatíveis com os padrões anteriores. Você pode até mesmo ligar uma placa Gigabit Ethernet a um hub 10/100 se quiser, mas a velocidade terá de ser nivelada por baixo, respeitando a do ponto mais lento.
A exceção fica por conta de alguns switches nível 3 (modelos mais inteligentes e caros, que incorporam recursos dos roteadores), que são capazes de "rotear" pacotes de diversas estações operando a 100 megabits, agrupando-os em um único link de 1 gigabit ligado ao servidor. Neste caso, você poderia ter (em teoria) 10 estações baixando arquivos a 100 megabits cada, simultaneamente, a partir de um único servidor com uma placa gigabit.
Todos esses padrões de Gigabit Ethernet são intercompatíveis a partir da camada 2 (link de dados) do modelo OSI. Abaixo desse nível está apenas a camada física da rede, que inclui o tipo de cabos e o tipo de modulação usado pela placa de rede para transmitir dados através deles. Os dados transmitidos, incluindo camadas de correção de erro, endereçamento, etc. são idênticos em qualquer um dos padrões.
Assim como muitos hubs antigos permitiam juntar redes que utilizavam cabo de par trançado e cabo coaxial, é muito simples construir dispositivos que interliguem esses diferentes padrões. Isso permite conectar facilmente segmentos de rede com cabos de par trançado e segmentos com fibra óptica, que podem ser usados para interligar redes distantes entre si.